### Electrochemical Hydrogen Refrigerator

Completed Technology Project (2017 - 2019)



#### **Project Introduction**

The goal is to develop and test a 1 W at 20K Joule-Thomson cryocooler using an electrochemical compressor. A Joule Thomson refrigerator based on electrochemical hydrogen compression (EHC) offers many benefits, including:

• Hydrogen has superior refrigerant properties than helium • Hydrogen offers isothermal heat exchanger between 15K -30K • EHC uses DC power, easy to integrate • EHC has no moving parts: low maintenance & easy to fabricate • EHC requires no lubrication, no oil separator systems • EHC architecture has commonality w\ fuel cells and electrolyzer

#### **Anticipated Benefits**

Develop and test a 1 W at 20K Joule-Thomson cryocooler using an electrochemical compressor. Cryocooler development and integration are both listed as a high priority technology need in TA-14 of the OCT Roadmap. 20K cryocoolers are relevant for multiple applications including zero boil off of chemical and nuclear propellants, liquefaction of ISRU gasses, cooling of IR detectors for science missions and cooling of superconducting cables and magnets.

#### **Primary U.S. Work Locations and Key Partners**





Electrochemical Hydrogen Refrigerator

### **Table of Contents**

| Project Introduction          | 1 |  |
|-------------------------------|---|--|
| Anticipated Benefits          |   |  |
| Primary U.S. Work Locations   |   |  |
| and Key Partners              | 1 |  |
| Project Website:              |   |  |
| Organizational Responsibility |   |  |
| Project Management            |   |  |
| Technology Maturity (TRL)     | 2 |  |
| Technology Areas              | 3 |  |
| Target Destinations           | 3 |  |



#### Center Innovation Fund: KSC CIF

## Electrochemical Hydrogen Refrigerator





Completed Technology Project (2017 - 2019)

| Organizations<br>Performing Work     | Role                       | Туре           | Location                         |
|--------------------------------------|----------------------------|----------------|----------------------------------|
| ★Kennedy Space<br>Center(KSC)        | Lead<br>Organization       | NASA<br>Center | Kennedy Space<br>Center, Florida |
| Florida Solar Energy<br>Center(FSEC) | Supporting<br>Organization | Academia       | Florida                          |
| Meta Vista, Inc.                     | Supporting<br>Organization | Industry       |                                  |

Florida

#### **Project Website:**

https://www.nasa.gov/directorates/spacetech/home/index.html

# Organizational Responsibility

#### **Responsible Mission Directorate:**

Space Technology Mission Directorate (STMD)

#### **Lead Center / Facility:**

Kennedy Space Center (KSC)

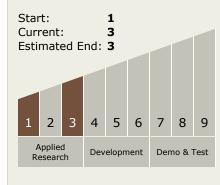
#### **Responsible Program:**

Center Innovation Fund: KSC CIF

### **Project Management**

#### **Program Director:**

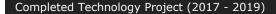
Michael R Lapointe


### **Program Manager:**

Barbara L Brown

#### **Principal Investigator:**

William U Notardonato


# **Technology Maturity** (TRL)





**Center Innovation Fund: KSC CIF** 

## Electrochemical Hydrogen Refrigerator





## **Technology Areas**

#### **Primary:**

- TX14 Thermal Management Systems
  - ☐ TX14.1 Cryogenic Systems
     ☐ TX14.1.3 Thermal
     Conditioning for
     Sensors, Instruments, and High Efficiency
     Electric Motors

## **Target Destinations**

The Sun, Mars

